\(\int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx\) [565]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 245 \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (21 a^3 A+21 a A b^2+21 a^2 b B+5 b^3 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 b^2 (7 A b+11 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 b \left (21 a A b+18 a^2 B+5 b^2 B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 b B (b+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[Out]

2/35*b^2*(7*A*b+11*B*a)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/7*b*B*(b+a*sec(d*x+c))^2*sin(d*x+c)/d/sec(d*x+c)^(5/2)
+2/21*b*(21*A*a*b+18*B*a^2+5*B*b^2)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2/5*(15*A*a^2*b+3*A*b^3+5*B*a^3+9*B*a*b^2)*(
cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+
c)^(1/2)/d+2/21*(21*A*a^3+21*A*a*b^2+21*B*a^2*b+5*B*b^3)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellip
ticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {3039, 4110, 4159, 4132, 3856, 2719, 4130, 2720} \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 b \left (18 a^2 B+21 a A b+5 b^2 B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 \left (21 a^3 A+21 a^2 b B+21 a A b^2+5 b^3 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 \left (5 a^3 B+15 a^2 A b+9 a b^2 B+3 A b^3\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b^2 (11 a B+7 A b) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 b B \sin (c+d x) (a \sec (c+d x)+b)^2}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[(a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

(2*(15*a^2*A*b + 3*A*b^3 + 5*a^3*B + 9*a*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]
])/(5*d) + (2*(21*a^3*A + 21*a*A*b^2 + 21*a^2*b*B + 5*b^3*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt
[Sec[c + d*x]])/(21*d) + (2*b^2*(7*A*b + 11*a*B)*Sin[c + d*x])/(35*d*Sec[c + d*x]^(3/2)) + (2*b*(21*a*A*b + 18
*a^2*B + 5*b^2*B)*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]]) + (2*b*B*(b + a*Sec[c + d*x])^2*Sin[c + d*x])/(7*d*S
ec[c + d*x]^(5/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3039

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4110

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
+ Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*Simp[a*(a*B*n - A*b*(m - n - 1)) + (
2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x], x] /; Free
Q[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 4159

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x]
 + Dist[1/(d*n), Int[(d*Csc[e + f*x])^(n + 1)*Simp[n*(B*a + A*b) + (n*(a*C + B*b) + A*a*(n + 1))*Csc[e + f*x]
+ b*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(b+a \sec (c+d x))^3 (B+A \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 b B (b+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}-\frac {2}{7} \int \frac {(b+a \sec (c+d x)) \left (-\frac {1}{2} b (7 A b+11 a B)-\frac {1}{2} \left (14 a A b+7 a^2 B+5 b^2 B\right ) \sec (c+d x)-\frac {1}{2} a (7 a A+b B) \sec ^2(c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 b^2 (7 A b+11 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 b B (b+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4}{35} \int \frac {\frac {5}{4} b \left (21 a A b+18 a^2 B+5 b^2 B\right )+\frac {7}{4} \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) \sec (c+d x)+\frac {5}{4} a^2 (7 a A+b B) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 b^2 (7 A b+11 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 b B (b+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4}{35} \int \frac {\frac {5}{4} b \left (21 a A b+18 a^2 B+5 b^2 B\right )+\frac {5}{4} a^2 (7 a A+b B) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{5} \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 b^2 (7 A b+11 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 b \left (21 a A b+18 a^2 B+5 b^2 B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 b B (b+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{21} \left (21 a^3 A+21 a A b^2+21 a^2 b B+5 b^3 B\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (\left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 b^2 (7 A b+11 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 b \left (21 a A b+18 a^2 B+5 b^2 B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 b B (b+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{21} \left (\left (21 a^3 A+21 a A b^2+21 a^2 b B+5 b^3 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (21 a^3 A+21 a A b^2+21 a^2 b B+5 b^3 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 b^2 (7 A b+11 a B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 b \left (21 a A b+18 a^2 B+5 b^2 B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 b B (b+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 7.10 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.73 \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {\sqrt {\sec (c+d x)} \left (84 \left (15 a^2 A b+3 A b^3+5 a^3 B+9 a b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 \left (21 a^3 A+21 a A b^2+21 a^2 b B+5 b^3 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+b \left (42 b (A b+3 a B) \cos (c+d x)+5 \left (42 a A b+42 a^2 B+13 b^2 B+3 b^2 B \cos (2 (c+d x))\right )\right ) \sin (2 (c+d x))\right )}{210 d} \]

[In]

Integrate[(a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

(Sqrt[Sec[c + d*x]]*(84*(15*a^2*A*b + 3*A*b^3 + 5*a^3*B + 9*a*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2,
 2] + 20*(21*a^3*A + 21*a*A*b^2 + 21*a^2*b*B + 5*b^3*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + b*(42*b
*(A*b + 3*a*B)*Cos[c + d*x] + 5*(42*a*A*b + 42*a^2*B + 13*b^2*B + 3*b^2*B*Cos[2*(c + d*x)]))*Sin[2*(c + d*x)])
)/(210*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(663\) vs. \(2(273)=546\).

Time = 16.21 (sec) , antiderivative size = 664, normalized size of antiderivative = 2.71

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}+\left (-168 A \,b^{3}-504 B a \,b^{2}-360 B \,b^{3}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (420 A a \,b^{2}+168 A \,b^{3}+420 B \,a^{2} b +504 B a \,b^{2}+280 B \,b^{3}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-210 A a \,b^{2}-42 A \,b^{3}-210 B \,a^{2} b -126 B a \,b^{2}-80 B \,b^{3}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+105 A \,a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+105 A a \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-315 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b -63 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}+105 B \,a^{2} b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 B \,b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-105 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{3}-189 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \,b^{2}\right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(664\)
parts \(\text {Expression too large to display}\) \(892\)

[In]

int((a+cos(d*x+c)*b)^3*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8*
b^3+(-168*A*b^3-504*B*a*b^2-360*B*b^3)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(420*A*a*b^2+168*A*b^3+420*B*a^
2*b+504*B*a*b^2+280*B*b^3)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-210*A*a*b^2-42*A*b^3-210*B*a^2*b-126*B*a*
b^2-80*B*b^3)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+105*A*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+105*A*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-315*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*
c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-63*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3+105*B*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d
*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+25*B*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*
x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-105*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3-189*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/
2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1
/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 295, normalized size of antiderivative = 1.20 \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (21 i \, A a^{3} + 21 i \, B a^{2} b + 21 i \, A a b^{2} + 5 i \, B b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-21 i \, A a^{3} - 21 i \, B a^{2} b - 21 i \, A a b^{2} - 5 i \, B b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (-5 i \, B a^{3} - 15 i \, A a^{2} b - 9 i \, B a b^{2} - 3 i \, A b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (5 i \, B a^{3} + 15 i \, A a^{2} b + 9 i \, B a b^{2} + 3 i \, A b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (15 \, B b^{3} \cos \left (d x + c\right )^{3} + 21 \, {\left (3 \, B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (21 \, B a^{2} b + 21 \, A a b^{2} + 5 \, B b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d} \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/105*(5*sqrt(2)*(21*I*A*a^3 + 21*I*B*a^2*b + 21*I*A*a*b^2 + 5*I*B*b^3)*weierstrassPInverse(-4, 0, cos(d*x +
c) + I*sin(d*x + c)) + 5*sqrt(2)*(-21*I*A*a^3 - 21*I*B*a^2*b - 21*I*A*a*b^2 - 5*I*B*b^3)*weierstrassPInverse(-
4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*sqrt(2)*(-5*I*B*a^3 - 15*I*A*a^2*b - 9*I*B*a*b^2 - 3*I*A*b^3)*weiers
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*sqrt(2)*(5*I*B*a^3 + 15*I*A*a
^2*b + 9*I*B*a*b^2 + 3*I*A*b^3)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c
))) - 2*(15*B*b^3*cos(d*x + c)^3 + 21*(3*B*a*b^2 + A*b^3)*cos(d*x + c)^2 + 5*(21*B*a^2*b + 21*A*a*b^2 + 5*B*b^
3)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F]

\[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int \left (A + B \cos {\left (c + d x \right )}\right ) \left (a + b \cos {\left (c + d x \right )}\right )^{3} \sqrt {\sec {\left (c + d x \right )}}\, dx \]

[In]

integrate((a+b*cos(d*x+c))**3*(A+B*cos(d*x+c))*sec(d*x+c)**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))*(a + b*cos(c + d*x))**3*sqrt(sec(c + d*x)), x)

Maxima [F]

\[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3*sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3*sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^3 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3 \,d x \]

[In]

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^3,x)

[Out]

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^3, x)